
t A Graph Based Backtracking Algorithm for Solving
General CSPs

Wanlin Pang' and Scott D. Goodwin2

QSS Group Inc., NASA Ames Research Center, Moffett Field, CA 94035
School of Computer Science, University of Windsor

Windsor, Ontario, Canada N9B 3P4

Abstract. Many AI tasks can be formalized as constraint satisfaction
problems (CSPs), which involve finding values for variables subject to
constraints. 'vfrhile solving a CSP is an NP-coiapktte task in geneid,
tractable classes of CSPs have been identified based on the structure of
the underlying constraint graphs. Much effort has been spent on exploit-
ing structural properties of the constraint graph to improve the efficiency
of finding a solution. These efforts contributed to development of a class
of CSP solving algorithms called decomposition algorithms. The strength
of CSP decomposition is that its worst-case complexity depends on the
structural properties of the constraint graph and is usually better than
the worst-case complexity of search methods. Its practical application is
limited, however, since it cannot be applied if the CSP is not decompos-
able. In this paper, we propose a graph based backtracking algorithm
called w-CDBT, which shares merits and overcomes the weaknesses of
both decomposition and search approaches.

I
I

1 Introduction

Many AI tasks can be formalized as constraint satisfaction problems (CSPs),
which involve finding values for variables subject to constraints. While con-
straint satisfaction in its general form is known to be NP-complete, many CSPs
are tractable and can be solved efficiently. Much work has been done to iden-
tify tractable classes of CSPs based on the structure of the underlying constraint
graphs and many deep and insightful results have been obtained in this direction

' [12, 1, 15, 8,6, 9, 28,29, 3, 17, 18, 21,10,20, 24, 251. A serious practical limitation
of this research, however, has been its focus on backtrack-free conditions. Obvi-
ously, a CSP which has backtrack-free solutions is tractable, but a tractable CSP
does not necessarily have backtrack-free solutions. In practice, many researchers
have tried to improve the efficiency of finding a solution by exploiting the struc-
tural properties of the constraint graph. A class of structure-based CSP solving
algorithms, called decomposition algorithms, has been developed [14, 16, 4, 71.
Decornposition a!gorithms attempt to find solutions by decomposing a CSP into
several simply connected sub-CSPs based on the underlying constraint graph and
then solving them separately. Once a CSP is decomposed into a set of sub-CSPs,
all solutions for each sub-CSP are found. Then a new CSP is formed where the
original variable set in each sub-CSP is taken as a singleton variable. Usually

.

the technique aims at decomposing a CSP into sub-CSPs such that the number
of variables in the largest sub-CSP is minimal and the newly formed CSP has a
tree-structured constraint graph. In this way, the time and space complexity of
finding all solutions for each sub-CSP is bounded, and the newly formed CSP
has backtrack-free solutions. The complexity of a decomposition algorithm is
exponential. in the size of the largest sub-CSP. The class of CSPs that can be
decomposed into sub-CSPs such that their sizes are bounded by a k e d number
k is tractable and can be solved by decomposition in polynomial time. This is
the strength of CSP decomposition. A fatal weakness of CSP decomposition,
however, is that the decomposition is not applicable to solving a CSP that is not
decomposable, that is, its decomposition is itself. A secondary drawback of CSP
decomposition is that, even if the CSP is decomposable, finding all solutions for
all the sub-CSPs is unnecessary and inefficient.

In this paper, we propose a graph based backtracking algorithm, called w-
CDBT, which shares the strength of CSP decomposition and overcomes its weak-
nesses. As with CSP decomposition, w-CDBT decomposes the underlying con-
straint hypergraph into an acyclic graph. Unlike CSP decomposition, however,
w-CDBT only tries to find one solution for a chosen sub-CSP, which is not sep-
arated from other sub-CSPs, and then tries to extend it to other sub-CSPs.
The w-CDBT algorithm uses a constraint representative graph called w-graph
[24, 22, 251. The complexity of w-CDBT is exponential in the degree of cyclicity
of the w-graph. Nevertheless, the significant contributions of this research on
combining search with constraint structure are: 1) The class of CSPs with the
property that the degree of cyclicity of the associated w-graph is less than a fked
number IC is tractable. As shown in [24, 22, 251, given a constraint hypergraph,
the degree of cyclicity of an w-graph is less than or equal that of the constraint
hypergraph. Therefore, the class of CSPs that is w-CDBT solvable in polynomial
time includes the class of CSPs that is solvable in polynomial time by other de-
composition algorithms such as hinge decomposition [16]. 2) For CSPs that do
not have the above mentioned property, w-CDBT still has a better worst-case
complexity bound than other decomposition algorithms such as hinge decompo-
sition [lS], which in turn has a better worst-case complexity bound than search
algorithms that do not exploit constraint structure. In both cases, w-CDBT also
has advantage over decomposition algorithms in that it finds only one solution
for each sub-CSP which saves space and time. 3) In cases where CSPs are not
decomposable, decomposition algorithms are not applicable whereas w-CDBT
degenerates to CDBT [23] which is still a practical CSP solving algorithm.

The paper is organized as follows. We first give definitions of constraint satis-
faction problems and briefly overview constraint graphs and CSP decomposition.
We then present the w-CDBT algorithm, analyze its complexity, and compare
it with decornposi tion algorithms.

2 Preliminaries

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a structure (X , D, V , S). Here, X =
{ X I , X2, . . ., Xn} is a set of variables that may take on values from a set
of domains D = { D I , D2, . . ., D,,}, and V = {VI, V2,. . . , Vm} is a family of
ordered subsets of X called constraint schemes. Each V, = {Xi,, Xi,,. . . ,Xi,,}
is associated with a set of tuples Si G Di, x Di, x . . . x Di,; called constraint
instance, and S = { S I , $ 2 , . . . , Sm} is a family of such constraint instances.
Together, an ordered pair (K, Si) is a constraint or relation which permits the
variables in V, to take only value combinations in Si.

Let (X ? D?V,S) be a CSP, VK = (Xk,, Xk2, ..., X k l } a subset of X. A
tuple (zk,, z k 2 , . . ., zkl) in Dkl x Dk2 x . . . x Dkl is called an instantiation
of variables in VK. An instantiation is said to be consistent if it satisfies all
constraints restricted in VK. A consistent instantiation of all variables in X is
a solution to the CSP (X , D, V, S) . The task of solving a CSP is to find one or
more solutions.

A constraint (vh,sh) in a CSP (X , D,V,S) is minimal if every tuple in sh
can be extended to a solution. A CSP (X , D, V , S) is minimal if every constraint
is minimal.

A binary CSP is a CSP with unary and binary constraints only, that is, every
constraint scheme contains at most two variables. A CSP with constraints not
limited to unary and binary is referred to as a general CSP.

We wiI1 also use some relational operators, specifically, j o in and projection.
Let C, = (x, Si) and Cj = (V,, Sj) be two constraints. The jo in of Ci and C, is
a constraint denoted by Ci W Cj. The projection of C, = (V,, Si) on VI E V, is a
constraint denoted by nvh(Ci). The projection of ti on vh, denoted by ti[vh], is
a tuple consisting of only the components of ti that correspond to variables in

2.2 Graph Theory Background

In this section, we review some graph theoretic terms we will need later and we
define constraint representative graphs, namely, the line graph, the join graph,
and the w-graph.

A graph G is a structure (V, E) , where V is a set of nodes and E is a set of
edges, with each edge joining one node to another.

A subgraph of G induced by V’ C V is a graph (V’, E’) where E’ C E contains
all edges that have both their endpoints in V‘. A partial graph of G induced by
E’ c E is a graph (YE’).

A path or a chain is a sequence of edges El, E2:. . . , Eq such that each Ei
shares one of its endpoints with Ei-1 and the other with Ei+l. A cycle is a chain
such that no edge appears twice in the sequence, and the two endpoints of the
chain are the same node. A graph is connected if it contains a chain for each pair

Y

of nodes. A connected component of a graph is a connected subgraph. A graph
is acyclic if it contains no cycle. A connects6 acyclic graph is a tree.

Let G = (V, E) be a connected graph. A node V, is called a cut node (or
articulation node) if the subgraph induced by V - {vi} is not connected. A block
(or nonseparable component) of a graph is a connected component that contains
no cut nodes of its own. An O(/El) algorithm exits for finding all the blocks and
cut nodes [ll].

Let G = (V, E) be a connected graph. The degree of cyclicity of G is defined
as the number of nodes in its largest block. A graph is k-cyclic if its degree of
cyclicity is at most k.

A hypergraph is a graph with hyper edges; that is, an edge in a hypergraph
may contain more than two nodes. The graph notations reviewed above can
be extended to hypergraph, such as sub-hypergraph, partial hypergraph, path,
connected component, block, and so on. These definitions can be found in [2] .

A graph G = (V, E) can be decomposed into a tree of blocks TB = (VB,EB):
1) choose a block V B ~ E VB, which contains at least one non-cut node, as the
root node of TB and mark it; 2) for each unmarked block X g , that has a node
in common with block XB,, connect XB, as a child node of X B ~ with an edge
(XB, ,XB,) and mark it; 3) take each child node of Xgi as the root node of a
subtree, repeat 2) and 3); 4) stop when every block is marked.

For example, give a graph G = (V, E) as shown in Figure 1 (A), we can have
a block tree as in Figure 1 (B), where B1 = {Vi, V2,V3, V4}, B2 = (V2, VS, VS},
B3 = {b,.v7, %}, B4 = {&, b, K O } , Bs = (6, h, v12), & = {%, 6 3 , %4},
B7 = {&, Ks, v16}. The cut nodes in this graph are V2, V,, V4, Vs, and VS

A block tree determines an order on the block set. For example, block set
B = (Bl,&,B3, Bq,B5,B6,B7} is in the depth-first order. For each block B k
(2 5 k) there is a cut node V,, of the graph that separates this block from its
parent block, and there is a node V,, in B1 which is not in any other blocks.
These nodes are called separating nodes. For example, the separating nodes of
the graph in Figure 1 (A) are Vi, fi, V,, Vq, V,, and Kj

(A) A Connected graph (B) A block Vec

Fig. 1. A graph and its block tree

A binary CSP is associated with a simple constraint graph, which has been
well studied and widely used for analyzing and solving binary CSPs [13, 7, 51.
A general CSP is associated with a constraint hypergraph, but the topological
properties of the hypergraph have not been well studied in the area of constraint
satisfaction problems. Instead, constraint representative graphs such as the line
graph, the join graph, and the w-graph have been studied and used to analyzing
and solving genera1 CSPs [20, 19, 16, 24, 25, 26, 271.

Given a CSP (X,D,V,S) and its hypergraph H = (X , V) , the line-graph
is a simple graph I (H) = (V,L) in which nodes in V are hyperedges of the

hypergraph and with two nodes joined with an edge in L if these two nodes
share common variables. A join graph j (H) = (V, J) is a partial linegraph in
which some redundant edges are removed. An edge in a linegraph is redundant
if the variables shared by its ~E-G end nodes aie ~ S G ahxed by cvcry nodes a!ccg
an alternative path between the two end nodes. An w-graph w (H) = (W , F)
is another constraint representative graph. The node set W of an w-graph is a
subset of nodes V in the line graph such that any node in V - W is covered by
two nodes in W ; that is, if vk E V - W , then there exist V, an V, in V , such
that v k C V, U V j . There is an edge joining two nodes if either the two nodes
shake common variables or they cover a node that is not in W .

For example, given a hypergraph H = (X , V) as in Figure 2 (A) with node set
X = { ~ ~ , ~ ~ , ~ ~ , ~ ~ , ~ ~ , ~ ~ , ~ ~ } and edge set V = {fi,&,%,V4,V5,v6}, where

{X3,X5, X7} , v6 = {X3,X6}. Its line graph 1(H) = (V,L) is in Figure 2 (B).
There is an edge, for example, between VI and V2 because these two nodes share a
common variable X I . Edge (V5, &) is redundant because the variable X3shared
by V5 and v6 is also shared by every nodes on an alternative path between V5 and
Vs, that is, path (V5, V3, v6). A join graph resulting from removing redundant
edges is in Figure 2 (C), and an w-graph is in (D) in which there is only 4 nodes,
since node VI is covered by V2 and Vq, and node V3 by V5 and v6.

Since constraint representative graphs are simple graphs, all of those graph
concepts mentioned previously are applicable. For example, an w-graph (or a
join graph) is k-cyclic if the number of nodes in its largest block is at most k.
An w-graph can be decomposed into a block tree.

Notice that the line graph or a join graph is also an w-graph, but in general, an
w-graph is simpler than the line or join graph in terms of the number of nodes, the
degree of cyclicity and the width. In particular, [22] gives an 0(lVl3) algorithm
for constructing an w-graph for a hypergraph with the following property:

Proposition 1. Given a hypergraph H = (X , V) , there exists an w-graph whose
degree of cyclicity is less than o r equal the degree of cyclicity of any join graph.

Note that the degree of cyclicity of a hypergraph is defined in [16] as the
degree of cyclicity of its minimal join graph. The above proposition indicates
that a hypergraph has an w-graph whose degree of cyclicity is less than or equal
that of the hypergraph.

fi = {xl,x2}, & = {x1,x4ix7}, h = {h,v3}, = {x2,x4,x7}, h =

A line graph is also called an inter graph in [19] and a dual-graph in [7].

(B) The line graph

(C) A join graph

Fig. 2. A hypergraph and its representative graphs

2.3 CSP Decomposition

Decomposition algorithms attempt to find solutions more efficiently by decom-
posing a CSP into a set of sub-CSPs such that these sub-CSPs form a tree
and the size of the largest sub-CSP is minimized. In general, a decomposition
algorithm works as follows:

1. decompose the constraint hypergraph into a tree;
2. find all solutions to each sub-CSP associated with each node in the tree;
3. form a new CSP where the original variable set in each tree node is taken as

4. find one solution to the new CSP.
a singleton variable;

Many decomposition algorithms have been developed [14, 16, 7, 41 and they
usually differ in the first step. A comparison of most notable decomposition algo-
rithms can be found in [14]. As pointed out in [14], each decomposition method
defines a parameter as a measure of cyclicity of the underlying constraint hyper-
graph such that, for a fixed number I C , all CSPs with the parameter bounded by
k are solvable in polynomial time.

w-graph fits well into this decomposition scheme in that we first construct an
w-graph from a given constraint hypergraph and then decompose the w-graph
into a tree. It is obvious that many graph decomposition methods can be used to
decompose an w-graph. For simplicity, however, we choose the block tree method
to decompose w-graphs in this paper.

The problem with the decomposition methods is that they cannot be ap-
plied if a given CSP does not possess some required properties (for example,

,

non-decomposible) . Moreover, even if the underlying constraint graph is decom-
posable, finding all solutions for every sub-CSP is inefficient and unnecessary. In
the following, we propose a graph based backtracking algorithm called w-CDBT
that overcomes these weaknesses.

3 w-Graph Based Backtracking

Let (X,D,V,S) be a CSP and C = {Ci = (vi,,Si)lq E V,Si E S } a set of
constraints. Let w(H) = (W, F) be an w-graph and B = {Bl, Bz, . . . , B I } a set of
blocks of w (H) which is ordered in the depth-fist manner according to the block
tree, and each block Bk = { vil, vk2, . . . , Ilkja,, } a set of nodes in which the f i s t
one is the separating node. Let cks,(V,, 6) denote the set of constraints on V-W
covered by U 5).
The idea of the w-CDBT algorithm is to search for a consistent assignment to
variables involved in a block and then extend it to the child blocks. If at a block
where no consistent assignment can be found, w-CDBT backtracks to the parent
block, reinstantiates variables in that block, and starts from there. Within a
block, w-CDBT uses a CDBT-like strategy [23] to find a consistent assignment
to the variable subset in the block, which may involve backtracking within the
block. The algorithm stops when a solution is found or when it proves that no
solution exists.

and 6 in w, that is, cksa(K, 6) = { v k E V - wlvk C

3.1 Algorithm

The w-CDBT performs backtrack at two nested levels which we call outer-BT
and inner-BT.’ The inner-BT finds a consistent instantiation of variables in-
volved in a block Bk = {Vkl, I/kz, . . ., &lBkl} . The outer-BT calls inner-BT to
find consistent instantiations for all blocks in the depth-first order. If a con-
sistent instantiation of variables in the current block is found then outer-BT
calls inner-BT again to find consistent instantiations of variables in its child
blocks; otherwise, the outer-BT moves backward to the parent block and calls
the inner-BT to find another consistent instantiation of variables in that block.

The function DFS corresponding to the outer-BT, the inner-BT, which is
based on CDBT [23], consisting of two recursive functions forward and goback,
and an auxiliary function test are given below. In these functions, some notations
are explained as follows: tUpB, is a consistent instantiation of variables in Bk;
S d T , is a consistent instantiation of variables in the subtree rooted at Bk; chddB,
is a set of child blocks of Bk; changedB, is a flag indicating if the instantiation
of variables in the separating node of Bk has changed; idxg, is the index of
the separating node of Bk in the parent block; tg, is a current instantiation of
variables in the separating node of Bk, initialized as a nil-tuple.

w -DFs(Bk , fi , tupI)

1. begin
2. h p B k + w-forward(Bk, VI , t U p I) ;

3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.

if tUpB, = 0 then return 0;
for each Bj E childB, do

if changedB, then
sdTj + w-DFS(Bj, V,, , t B j) ;
if sol^^ = unsatisfiable t hen re turn unsatisfiable;
if SOZT, = 0 then

delete tB j from s j , and Sj, ;
if Sj, = 0 then re turn unsatisfiable;

re turn (w-DFS(Bk, V’ , tup’));

i d Z B j -1
v ‘ u,,1 v k , ; tup’ t tUPB, [v ’] ;

changedBj i f a l se ;
end for
re turn W (W B j EchiZds, ~ 0 1 ~ ~ 1;

16. end

goback(&, fi, turn)

1. begin
2.
3.
4.
5.
6 . if tes t (tup1, c l c s (f i)) t hen
7. for each Bj E chddB,
8.
9. re turn fonoard(Bk, VI, t u p I) ;

if fi = v k l then return 0;
while S; # 0 do

tup t one tuple taken from 5’;;
tup1 t tupr-1 w tup;

if Vki+, E Bj and tup # t B j then t B j c tup; changedB, + true;

10. end while
11. r e t u r n goback(&, V1-1,tup1-1);
12. end

test(tup1, cks))
1. begin
2.
3.
4. return true;
5 . end

for each ch = (vh, sh) in cks d o
if tUpI[Vh] + Sh t h e n return false;

For a current block Bk = {Vk l , v k z , . . . , V k l B k , } and a partial instantiation
tup1 of variables in VI = u;=1vk,, DFS tries to extend tup1 to a consistent in-
stantiation sol^, of variables involved in the subtree rooted at B k . Firstly, it tries
to extend tup1 to a consistent instantiation of variables in VB,. This can
be done by function forward. If forward succeeds, that is, if a consistent instan-
tiation tUpB, is found, then DFS moves forward to those of its child blocks that
have not been instantiated at all or their instantiations have been changed due
to backtracking to the parent block. DFS calls itself recursively for each of the
subtrees, and then returns the joined tuple tupB, W S O ~ T ,) . If for-
ward fails, that is, if it does not find a consistent instantiation tUpB, of variables
in VB, such that tUPB, [T/kl] = tUPk,, then Df ' s reports that the tuple tupk , has
no Consistent extension to variables in Vg,. Before the algorithm backtracks to
the parent block, the tuple tUPk, is deleted from S k , , since it will not be in any
solution which will be explained in Section 3.3 and Skl is checked if it is empty.
If it is empty then there is no solution to the problem, so DFS stops and reports
unsatisjiable. If S k l is not empty then DFS moves up to the parent block and
starts from there.

Within block B k , suppose that we have already found a consistent instantia-
tion tup1 of variables in Vk , , v k z , . . . , v k , (their union is denoted by fi), function
forward extends this instantiation by appending to it an instantiation of vari-
ables in vk,+l which is a node in the w-graph. forward chooses a tuple t u p from
Si,+, as an instantiation of variables in Vk,+, and joins t u p and tup1 to form
a new tuple tupr+l, which is tested to see if it is consistent. Notice that the
subset Si,+, contains those tuples in sk,+l that are compatible with t u p l . If
t u p ~ + l is consistent, then forward is called recursively to extend tupr+l; oth-
erwise, another tuple from Si,+, is tried. If no tuples are left in S;,+,, goback
is called to re-instantiate variables in variable set v k , . Function goback tries to
re-instantiate variables in vk, and to form another consistent instantiation of
variables in VI = U&l&,. It first chooses another tuple from Si, and forms a
new tuple tup1 which is tested to see if it is consistent. If tup1 is consistent, then
forward is called to extend tupr; otherwise, another tuple from Si, is tried. If Si,
is empty, then goback is caIIed recursively to re-instantiate variables in variable
set Vk,-,. Note that goback does not re-instantiate variables in the separating
node vkl. The tuple tBk for variables in vk l was chosen when the parent block

was dealt with. If tg, cannot be extended to variables in Bk, goback returns 0
and passes the control to DFS which deletes ts, from s k i . Backtracking across
blocks occurs.

Function test(tupK, cks) returns true if tuple tUPK satisfies all the constraints
in cks, and false otherwise.

To find a solution to a given CSP P = (X , D, V, S) , we need a main program
such as the one given below to call DFS repeatedly until a solution is found or
unsatisfiability is verified.

w-CDBT(P, sol)

1. begin
2.
3.
4.
5.
6. end for
7. return unsatisfiable;
8. end

for each tup E SI, do
sol +- DFS(Bk,, Vkl , tup);
if sol = unsatisfiable then return unsatisfiable;
if sol # 0 then return sol;

Algorithm DFS instantiates the variables in block Bj only if the values as-
signed to the variables in the separating node of Bj have been changed; that is,
only if changedg, is true (line 5 in the algorithm). At the first time of visiting
Bj, changedg, is true since the variables in the separating nodes have been in-
stantiated when the algorithm visits Bk, the parent block of Bj. However, when
the algorithm goes back to re-instantiates the variables in Bk, the variables in
the separating node may not be affected, in which case the assignment to the
variables in Bj will be retained. Needless to say, this saves time of repeatedly
finding values for the variables in the subtree rooted at BJ. However, an imme-
diate question to ask is whether this causes the algorithm to miss any solutions.
The answer is no because even if the algorithm does re-instantiate variables in
B3, the instantiation will be the same if the values assigned to the variables in
the separating node of Bj have not been changed.

3.2 Example

We consider a CSP P = (X , D, V, S) which has an w-graph in Figure 1 (A) and
we use this example to illustrate how the w-graph based backtracking works.

We are given an ordered block set B = {B1 , B2, B3, B4, Bs, B6, BT}, where
each block is an ordered set of constraint schemes, that is: B1 = {VI, VZ , V, , %},
B2 {VZ, V,, VS}, B3 = {VS, 6, Va}, B4 = {VS, VS, q o } , B5 = {v3, &I, VI^},
Bs = {h, VI37 v14}, B7 = {V4,V15,V16}. Let Vgi be the subset of variables
involved in Bi.

DFS first calls fomard(B1, VI, tgl) to extend t g , to variables in Vg, . If it fails,
then it will choose another tuple from SI and start again. Suppose that it SUC-

ceeds and it returns a tuple t U p & as a consistent instantiation of variables in

We start from w-CDBT(P, sol), choose a tuple tg, E SI and call DFS(B1, Vi, tB,).

VB, , then DFS will be called recursively for each child block B2, B5, Be and B7.
Xecall that tBi is the instantiation of vzriables in the separating node. For the
&st child block B2, DFS(B2, V2, t B z) is called to extend tBz to variables involved
in the subtree rooted at B2, which include the variables in Vj, VS, V7, G, Vg and
VIO. At first, fomard(B2, V2, tB,) is called to extend t g , to variables in V5 and
v6. Suppose that it succeeds and it returns a tuple tUpg, as a consistent in-
stantiation of variables in then DFS will be called for the child blocks of
B2. Again, suppose that they all succeeds, that is, tuples SdT3 and SdT4 are re-
turned. So, DFS(B2, V2, tupvz) returns a tuple SOlT, = Sol& W SdTZ W SdT, as
a consistent instantiation of variables involved in the subtree rooted at B2. For
the second child block B5, DFS(B5, V3, tB,) is called to extend tg, to variables
involved in the subtree rooted at Bj. It calls fomtard(B5, V3, tg,) to extend t g ,
to variables in V B ~ . If it succeeds, then DFS(&, %, t B 5) will return a tuple SOlT5.

However, suppose that forward(Bj, V,, t&) fails, which means that tg, cannot be
extended to a consistent instantiation of variables in B5, then DFS(B5, VJ, t g 5)
returns SdTS which is a nil-tuple. Since SOZT, is empty, tuple tg, is deleted
from S3, and S3 is checked to determine if i t is empty now. If it is, then there
is no solution to the problem, DFS(B1, Vi, t B 1) will return unsatisfiable and
CDBT(P, sol) will return unsatisfiable. We suppose that S3 is not empty. Then
DFS(B1, V’, tup’) is called, where V’ = Vi U V2 and tup’ = tupv, W tupvz . This
time, forward(B1, V’, tup’) is called to extend tup‘ to a consistent instantiation
of variables in VB,. If it finds one without re-instantiating variables in V2 and
VI , then the instantiation of variables involved in the subtree rooted at B2 is
retained, and DFS is called for child nodes B5, Be, B7. If variables in V2 are re-
instantiated, then the variables involved in the subtree rooted at B2 may have
to be re-instantiated. However, whether or not variables in V B ~ and V B ~ need
to be re-instantiated depends on whether or not V5 and Vs are re-instantiated.
If forward(B1, V’, tup’) goes back to 6, then DFS(B1, V’, tup’) returns empty
tuple, we will choose another tuple from SI and start from there.

3.3 Analysis

For analysis, we d e h e minimal constraint and give a few technical lemmas,
which have been proven in [22].

Let P = (X, D, V,S) be a CSP and C = {Ci = (V,,S,)lV, E V,Si E S } a set
of constraints. Let H = (X , V) be the associated hypergraph, w (H) = (W, F) an
w-graph, B = { B I , B2,. . . , Bl} a set of blocks ordered in the depth-first manner,
and A = {Val, V,, , . . . , Val} a set of separating nodes. Let V B ~ denote the subset
of variables involved in block Bi.

Definition 2. Let (X, D, V, S) be a CSP, let V’ be a subset of V and C’ a subset
of C restricted on VI. A sub-CSP induced by V’ is a CSP (XI, D‘, V’, S’) where
X‘ = UV’, D’ is a subset of the domains of variables in XI, and S’ is a set
of constraint instances corresponding to V‘. A constraint Ci E C’ is said to be
minimal relative to (X’,D’,V’,S’> if every tuple in Si can be extended to a
consistent instantiation of variables in X‘. A constraint Ci E C is said to be

minimal if it is minimal relative to (X, D, V, S). A CSP is said to be minimal if
every constraint is minimal.

Let CA = {(Vai, Sai)Ibd E A) be a subset of constraints on A.

Lemma3. If every constraint in CA is minimal, then every consistent instan-
tiation of variables involved in each block can be extended to a solution.

This lemma suggests that if every constraint on those articulation nodes is
minimal, then the relation represented by the sub-CSP corresponding to each
block is minimal. The following lemma indicates that minimizing the constraints
on articulation nodes can be done by minimizing them relative to each block.

Lemma 4. If every constraint (Vai, Sad) in C A is minimal relative to the sub-
CSP induced by the block to which Vad belongs, then they are also minimal.

Lemma 5. Let Bi be a block and Vad the separating node. If a tuple an Sad has n o
consistent extension to variables in Vgi, then it cannot be extended to a solution.

Based on this lemma, if a tuple in a constraint corresponding to an articu-
lation node has no consistent extension to the variables involved in the block to
which the articulation node belongs, it can be safely deleted. If every tuple in
such a constraint is so, then there is no solution to the problem.

Lemma6. Let B, be the parent block of B3, and V,, the separating node in
B,. Let tupB, and tUpB, be consistent instantiations of variable in VB, and
VB, respectively. If tup& [Va,] = tUpB, [Va,], then W tUpB, i s a consistent
instantiation of variables VB, U VB, .

This lemma suggests that if we have a consistent instantiation tUPB, of vari-
ables in a parent block B,, extending tup& to the variables in the child block
B, can be done by extending [Va, J to the variables in B3, so the consistent
checking is restricted within the child block.

Theorem 7. The w-CDBT is correct.

Proof. We prove that w-CDBT is sound, complete, and it terminates. The
CDBT algorithm has been proven to be correct in [23], the inner-BT consisting
of forward and goback is correct with respect to each block.

Based on Lemma 6, when a consistent instantiation of variables in the parent
blocks is extended to a child block, the new instantiation to variables including
variables in the child block is consistent. In particuIar, when a consistent instan-
tiation is successfully extended to variables in the last block, we have a whole
assignment which is a solution. This proves the soundness.

The completeness follows from Lemma 5 and the fact that the inner-BT is
complete.

The search space of w-CDBT can be seen as a IWI-level tree, in which each
level corresponds to a V, E W, and w - C D B T visits every node in the search

space at most once, it terminates. 0

Suppose that the w-graph is IC-cyclic and has 1 blocks. Let Is1 be the size of
the maximal constraint relations.

Lemma$. If every constraint in CA is minimal, then any backtracking per-
formed in u-CDBT i s restricted within each block, and the complexity of using
w-CDBT to solve a CSP with minimum constraints in CA is O(llslk).

Proof. Suppose that the algorithm has found a consistent instantiation of vari-
ables in V& and it moves forward to a child block Bj. Finding a consistent
instantiation of variables in VB, may require backtracking but it will not back-
track to the parent block Bi, since, according to Lemma 3, the existing consistent
instantiation of variables in VBi can be extended to a soiution.

The time complexity of finding a consistent instantiation of variables involved
in a block is O(lslk), and there are 1 blocks, so the time complexity of w-CDBT
is o(llslk).

Theorem 9. The t ime complexity of w-CDBT is O(llslk).

Proof. Based on the Lemma 4, minimizing constraints in CA can be done by
minimizing them relative to each block. The complexity of minimizing a con-
straint relative to a block is O(lslk), so the complexity of minimizing constraints
in CA is O(Zlslk). In the worst case (that is equivalent to using w-CDBT to find
all solutions), every constraint in CA will be minimized, which takes O(llslk)
time, and then finding solutions with minimized constraint in CA takes another
O(llslk) time. Together, the time complexity of w-CDBT is O(llslk). 13

Since the complexity of solving the CSP by using w-CDBT is exponential in
IC, a class of CSP where k is less than a fixed number is w-CDBT solvable in
polynomial time. Following directly from Proposition 1, this class of tractable
CSPs includes the class of CSPs solvable by the hinge decomposition [lS].

4
Methods

Comparison with Decomposition and Other Search

A general decomposition scheme is given in Section 2.3 and an w-graph based
decomposition algorithm can be easily constructed. To compare w-CDBT with
decomposition algorithms including w-graph based decomposition, we argue that
w-CDBT shares the virtue of tree search algorithms in that it finds only one
consistent assignment to variables in each block which corresponding to a sub-
CSP in the decomposition scheme. Finding one solution is more cost-effective
than finding all solutions.

Furthermore, the w-CDBT algorithm has an additional two advantages over
other search methods: 1) when a tuple tBi cannot be extended to a consistent in-
stantiation of variables in V B ~ , it is deleted from the constraint on the separating

node of B,; then all the subregions of search space rooted at nodes containing
t ~ $ will be ruled out to avoid further exploration; 2) when the algorithm back-
tracks from a child block to the parent, the instantiation of the variables in the
sibling blocks preceding this block may be retained, so that this sub-region of
the search space does not need to be searched repetitively.

Another advantage of w-CDBT is its ability to overcome the failure of de-
composition methods when a given CSP is not decomposable. In this case, the
decomposition method degenerates into whatever method is used to find all solu-
tions which is expensive. w-CDBT, on the other hand, degenerates to the original
CDBT algorithm which is still a practical CSP solving algorithm.

5 Conclusion

Constraint satisfaction in its general form is known to be NP-complete, yet many
CSPs are tractable and can be solved efficiently. Every CSP has an associated
constraint graph. The key idea is that the efficiency of finding a solution can be
improved by exploiting structural properties of the constraint graph. The contri-
butions of this paper are both theoretical and practical. First, we have identified
a new tractable class of CSPs that contains previously identified tractable classes.
This extends the known set of CSPs that are solvable in polynomial time. Sec-
ond, we have provided an algorithm that solves CSPs in this class in polynomial
time, whereas other known algorithms cannot guarantee polynomial time solu-
tions for this class. Third, even outside of this class, the provided algorithm has
a better worst case complexity. This extends the limits of what is solvable in
practice. Future empirical study is required to evaulate the actual improvement
of the w-CDBT algorithm against other decompostion and search algorithms.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. ACM, 30(3):497-513, 1983.

2. C. Berge. Graphs and Hypergraph North-Holland, New York, 1973.
3. M. Cooper, D. A. Cohen, and P. G. Jeavons. Characterizing tractable constraints.

Artificial Intelligence, 65:347-361, 1994.
4. R. Dechter. Enhancement schemes for constraint processing: backjumping, learn-

ing, and cutset decomposition. Artificial Intelligence, 41:273-312, 1990.
5. R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of Artifi-

cial Intelligence, volume 1, pages 276-285. Wiley-Interscience, 2nd edition, 1992.
6. R. Dechter. From local to global consistency. Artificial Intelligence, 55:87-102,

1992.
7. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-

ligence, 38:353-366, 1989.
8. R. Dechter and J. Pearl. Directed constraint networks: A relational framework for

causal modeling. In Proceedings of IJCAI-91, pages 1164-11 70, Sydney, Australia,
1991.

9. R. Dechter and P. van Beek. Local and global relational consistency. In Proceed-
ings of the 1st International Conference on Principles and Practices cf Constraint
Programming, pages 240-257, Cassis, France, September 1995.

10. Y. Deville and P. Van Hentenryck. An efficient arc consistency algorithm for a
class of CSPs. In Proceedings of IJCAI-91, pages 325-330, Sydney, Australia,
1991.

11. S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.
12. E. F'reuder. A sufficient condition for backtrack-free search. J. of the ACM,

29(1):25-32, 1982.
13. E. F'reuder. Backtrack-free and backtrack-bounded search. In L. Kana1 and

V. Kumar, editors, Search in Artificial Intelligence, pages 343-369. Springer-
Verlag, New York, 1988.

14. G. Gottlob. A comparison of structural CSP decomposition methods. Artificial
Intelligence, 124:243-282, 2000.

15. M. Gyssens. ACM Transactions on
Database Systems, 11(1):81-108, 1986.

16. M. Gyssens, P. Jeavons, and D. Cohen. Decomposing constraint satisfaction prob-
lems using database techniques. Artificial Intelligence, 66:57-89, 1994.

17. P. Jeavons. Tractable constraints on ordered domains. Artificial Intelligence,

18. P. Jeavons, D. Cohen, and M. Gyssens. A test for tractability. In Lecture Notes
in Computer Science, volume 1118, pages 267-281, Cambridge, MA, 1996. CP'96.

19. P. Jegou. On some partial line graphs of a hypergraph and the associated matroid.
Discrete Mathematics, 111:333-344, 1993.

20. P. Jegou. On the consistency of general constraint satisfaction problems. In Pro-
ceedings of AAAI-93, pages 114-119, 1993.

21. L. M. Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:174-
160, 1993.

22. W. Pang. Constraint Structure in Constraint Satisfaction Problems. PhD thesis,
University of Regina, Canada, 1998.

23. W. Pang and S: D. Goodwin. Constraint-directed backtracking. In The 10th Aus-
tralian Joint Conference on AI, pages 47-56, Perth, Western Australia, December
1997.

24. W. Pang and S. D. Goodwin. A revised sufficient condition for backtrack-free
search. In Proceedings of 10th Florida AI Research Symposium, pages 52-56, Day-
tona Beach, FL, May 1997.

25. W. Pang and S. D. Goodwin. Characterizing tractable CSPs. In The 12th Cana-
dian Conference on AI, pages 259-272, Vancouver, BC, Canada, June 1998.

26. W. Pang and S. D. Goodwin. Consistency in general CSPs. In The 6th Pacific
Rim International Conference on AI, pages 469-479, Melbourne, Australia, August
2000.

On the complexity of join dependencies.

79:327-339, 1995.

27.

28.

29.

W. Pang and S. D. Goodwin. Binary representation for general CSPs. In Proceed-
ings of 14th Florida A I Research Symposium (FLAIRS-2001), Key West, FL, May
2001.
P. van Beek. On the minimality and decomposability of constraint networks. In
Proceedings of AAAI-92, pages 447452, 1992.
P. van Beek and R. Dechter. On the minimality and global consistency of row-
convex constraint networks. Journal of the ACM, 42:543-561, 1995.

